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Spin precession has been used to measure the transmission time � over a distance L in a graphene sheet.
Since conduction electrons in graphene have an energy-independent velocity v, one would expect ��L /v.
Here we calculate that ��L /v at the Dirac point �=charge neutrality point� in a clean graphene sheet, and we
interpret this result as a manifestation of the Hartman effect �apparent superluminality� known from optics.
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I. INTRODUCTION

The precession of the electron spin in a magnetic field
provides a clock for the study of the electron dynamics.1 This
so-called Larmor clock2,3 is a particularly useful tool in a
quasi-two-dimensional system, when one can use a parallel
magnetic field to avoid perturbing the dynamics by the Lor-
entz force. The single atomic layer of carbon atoms known
as graphene is the ultimate two-dimensional system.4 Spin
precession was used successfully by van Wees and collabo-
rators to measure the diffusion time through a disordered
graphene sheet.5,6 For a mean-free path l small compared to
the separation L of the source and detector contacts, the dif-
fusion time �D��0L / l is larger by a factor L / l than the bal-
listic time of flight �0�L /v, with v=106 m /s the energy-
independent Fermi velocity in graphene.

In a clean graphene sheet, when l�L, the diffusive dy-
namics becomes ballistic, at least for Fermi energies �F away
from the Dirac point ��F=0�. At the Dirac point the dynam-
ics in graphene is called “pseudodiffusive”: conductivity and
shot noise suggest diffusive transport even in the absence of
any disorder.7 In this paper we theoretically address the ques-
tion of what spin precession can tell us about the dynamics at
the Dirac point.

While the notion of pseudodiffusive dynamics might sug-
gest a scaling ��L2 for the transmission time � at the Dirac
point, such quadratic scaling is forbidden by dimensional
arguments. In the absence of disorder there is only a single
length scale L at �F=0 so �=constant�L /v is the only quan-
tity with dimensions of time. As we will show, the propor-
tionality constant is �1 so ��L /v — as if electrons could
propagate at speeds 	v.

The optical analog of this anomalously short transmission
time, with v replaced by the speed of light, is called super-
luminality or the Hartman effect.8,9 As explained by
Winful,10 there is no violation of relativity because the trans-
mitted waves are not propagating but evanescent. Graphene
would offer an interesting possibility to observe this para-
doxical effect in the solid state.

In the next sections we formulate the scattering problem
in a clean graphene sheet at the Dirac point,7,11 and calculate
the transmission time � measured in a weak-field spin-
precession experiment over a distance L. We then perform a
separate calculation of the mode-dependent Wigner-Smith
delay time �n, which is directly defined in terms of the scat-
tering matrix12,13 �without reference to spin precession�. This
is the quantity studied in the optical context.

We demonstrate that � is the weighted average of �n,
weighted with the mode-dependent transmission probability
Tn. More precisely, depending on the relative alignment of
the magnetization at the two ends of the graphene sheet, the
precession experiment measures either ��1� or ��2�, defined by

��p� = ��
n

�n
pTn

�
n

Tn �
1/p

, p = 1,2. �1�

For a graphene sheet with a large aspect ratio �width W�
length L� we calculate

��1� =
7
�3�

�2

L

v
= 0.85

L

v
, ��2� = 0.87

L

v
. �2�

Both times are below L /v, as a manifestation of the Hartman
effect.

II. SPIN PRECESSION THROUGH A GRAPHENE SHEET

We study the four-terminal geometry14 of Fig. 1, in which
spin-up electrons are injected into a graphene sheet from
ferromagnetic contact 1 at an elevated voltage V1, and
drained to ground via three other ferromagnetic contacts 2, 3,
and 4. The two contacts at the same side of the graphene
sheet have antiparallel magnetizations. In the existing
experiments,5,6 the contacts at opposite sides of the graphene
sheet are collinear. This is the geometry shown in Fig. 1,

FIG. 1. �Color online� Schematic top view of a graphene sheet
with four ferromagnetic contacts numbered 1, 2, 3, and 4; arrows
indicate the direction of magnetization. The ratio I31 / I41 of currents
from contact 1 into contacts 3 and 4 measures the spin-precession
time ��2� in an in-plane magnetic field B. An alternative geometry,
with the magnetization in contacts 3 and 4 aligned perpendicularly
to the magnetization in contacts 1 and 2 �and still perpendicularly to
B�, measures the time ��1� through the ratio �I41− I31� / �I41+ I31�.
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where the magnetizations in all four contacts are aligned
along the �y direction. We will consider this case first and
show that it measures the time ��2� of Eq. �1�.

The time ��1� is measured if the magnetizations in contacts
3 and 4 are aligned perpendicularly to those in contacts 1 and
2 �along the �z direction of Fig. 1�. We defer a discussion of
that geometry to Sec. IV.

Following Ref. 7, the contact regions are modeled by a
deep potential well, V=−V���x�−L /2�. �We will eventually
take the limit V→.� The Fermi energy is tuned to the
Dirac point �F=0 in the region between the contacts �x�
�L /2. There are therefore no propagating modes in this re-
gion while the contacts support a large number N=kW /�
of propagating modes �with k=V /�v the Fermi wave num-
ber in the contact region�.

Our main interest is in the case of massless electrons but
since carriers in graphene may acquire a mass for certain
substrates,15,16 we will include a possible nonzero mass term
in the calculations. The effect of a mass is only important
near the Dirac point so we may set the mass to zero in the
contact regions, taking the mass profile ���L /2− �x�� shown
in Fig. 2.

The electron spin precesses in the y-z plane around the
magnetic field B=Bx̂. We assume that the length L of the
region between the contacts is large compared to the length
of the contacts themselves so that we may neglect the pre-
cession in the contact region and take the magnetic field
profile B��L /2− �x��.

The Hamiltonian is given by

H = Is � HD −
1

2
��B�x � Ips, �3�

where Is and Ips are identity matrices in real spin space and in
pseudospin space, respectively. The Pauli matrix �x in the

second term acts on the real spin and accounts for the Zee-
man energy, with �B=g�BB the Larmor frequency, �B the
Bohr magneton, and g�2 the gyromagnetic factor. The first
term contains the Dirac Hamiltonian,

HD = v��xpx + �ypy� + �z� + V �4�

for a single valley in graphene �no intervalley scattering�.
The Pauli matrices �x ,�y ,�z in HD act on the pseudospin �or
sublattice� degree of freedom. We neglect the coupling be-
tween the real spin and the orbit, which is weak in graphene.

We seek the currents I31 and I41 flowing from contact 1
into contacts 3 and 4 separated by a distance L. These are
determined by the transmittances T↓↑ and T↑↑ with and with-
out spin flip,

I31 = T↓↑G0V1, I41 = T↑↑G0V1. �5�

�The conductance quantum G0=2e2 /h accounts for a twofold
valley degeneracy.�

For any precessing spin, the probability of a spin flip after
a time t is 1

4 ��Bt�2 to second order in B. This suggests the
definition of an effective transmission time ��2�, in terms of
the fraction T↓↑ / �T↑↑+T↓↑�=T↓↑ /T↑↑+O�B4� of transmitted
electrons that have flipped their spin,

T↓↑/T↑↑ =
1

4
��B��2��2 + O�B4� . �6�

Our goal is to calculate this time ��2�.

III. CALCULATION OF THE TRANSMISSION TIME
FROM SPIN PRECESSION

The eigenvectors of the Hamiltonian �3� corresponding to
the eigenvalue �F read

�+ =
1

2
	1

1

 � 	 1

zk+

eik+x+iqy , �7�

�− =
1

2
	 1

− 1

 � 	 1

z̃k−

eik−x+iqy , �8�

zk =
k + iq

�F − V + � + B
, z̃k =

k + iq

�F − V + � − B
. �9�

We abbreviate B=��B /2 and set �v to unity �restoring units
in the final expressions�. The wave vectors

k� = ���F − V � B�2 − �2 − q2 �10�

are the longitudinal wave vectors. The wave vector q is the
transverse wave vector.

The left spinor in the tensor product in Eqs. �7� and �8�
represents the state of the real spin and the right spinor rep-
resents the state of the pseudospin. The superscripts + and −
indicate the spin polarization along the x axis: the wave func-
tions �+ and �− are eigenstates of �x � Ips with eigenvalues
+1 and −1, respectively.

We solve the scattering problem with potential, mass, and
magnetic field profiles as shown in Fig. 2. In the contact

FIG. 2. �Color online� Profile of the potential V �upper panel�,
mass � �middle panel�, and magnetic field B �lower panel� along
the graphene sheet. A nonzero mass is included for the sake of
generality but the case �=0 is our main interest. The contact re-
gions �x�	L /2 are modeled by a deep potential well �depth V

��v /L�. Spin precession in the contacts is neglected so we set B
=0 there. For charge neutrality in the region �x��L /2 the Fermi
energy is lowered to �F=0 �Dirac point�.
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regions �x�	L /2, where V=−V→, we have zk+→1, z−k+

→−1, z̃k−→−1, and z̃−k−→1. We consider a wave incident
on the charge-neutral region �x��L /2 from ferromagnetic
contact 1 so with spin up along the y direction. Matching
modes at x= �L /2 we arrive at the following linear equa-
tions for reflection and transmission amplitudes:

	1

i

 � 	1

1

 + r11	1

i

 � 	 1

− 1

 + r21	 1

− i

 � 	 1

− 1



= A1	1

1

 � 	 1

zk+

e−ik+L/2 + A2	1

1

 � 	 1

z−k+

eik+L/2

+ A3	 1

− 1

 � 	 1

z̃k−

e−ik−L/2 + A4	 1

− 1

 � 	 1

z̃−k−

eik−L/2,

�11�

t31	 1

− i

 � 	1

1

 + t41	1

i

 � 	1

1



= A1	1

1

 � 	 1

zk+

eik+L/2 + A2	1

1

 � 	 1

z−k+

e−ik+L/2

+ A3	 1

− 1

 � 	 1

z̃k−

eik−L/2 + A4	 1

− 1

 � 	 1

z̃−k−
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�12�

The amplitudes r11, r21, t31, and t41 are the reflection and
transmission amplitudes from contact 1 to contacts 1, 2, 3,
and 4. Together with the coefficients A1, A2, A3, and A4 we
have eight unknowns, determined by the eight independent
equations contained in Eqs. �11� and �12�.

At the Dirac point, that is when �F=0, we find

T↓↑ � �t31�2 =
4B2�2 sinh2�L��

�2 − B2 + ��2 + B2�cosh�2L���2 , �13�

T↑↑ � �t41�2 =
4�4 cosh2�L��

�2 − B2 + ��2 + B2�cosh�2L���2 , �14�

R↓↑ � �r21�2 =
4B2��2 + B2�sinh4�L��

�2 − B2 + ��2 + B2�cosh�2L���2 , �15�

R↑↑ � �r11�2 =
�2��2 + B2�sinh2�2L��

�2 − B2 + ��2 + B2�cosh�2L���2 . �16�

We have abbreviated �=�q2+�2−B2. One can verify that
R↑↑+R↓↑+T↓↑+T↑↑=1, as it should be. For B=0 �no preces-
sion� we recover the transmission and reflection probabilities
of Refs. 7 and 11.

We apply periodic boundary conditions at y=0 and y
=W. �Since we assume W�L, the choice of boundary con-
dition does not matter for our results.� The transverse wave
vector is then discretized as qn=2�n /W, where n
=0, �1, �2, . . . , 1

2N numbers the transverse modes. The
transmittances T↓↑ and T↑↑ �with and without spin flip� are
defined by the sum over modes of T↓↑ and T↑↑. For W�L

and N→ the sum over transmitted modes may be replaced
by an integral over q, �n→ �W /2���−

 dq.
Expanding up to second order in BL=�BL /2v, we obtain

the weak-field transmittances,

T↓↑ = B2L2 W

�L
�

0



du
tanh2�u2 + �2

�u2 + �2�cosh2�u2 + �2
, �17�

T↑↑ =
W

�L
�

0



du
1

cosh2�u2 + �2
, �18�

+ B2L2 W

�L
�

0



du
tanh�u2 + �2

�u2 + �2cosh2�u2 + �2
, �19�

− B2L22W

�L
�

0



du
tanh2�u2 + �2

�u2 + �2�cosh2�u2 + �2
�20�

with �=L� and u=Lq.
Comparison with Eq. �6� gives an expression for the

transmission time ��2�,

��2� = �L/v���
0



du
tanh2�u2 + �2

�u2 + �2�cosh2�u2 + �2�1/2

� ��
0



du
1

cosh2�u2 + �2�−1/2

�21�

plotted in Fig. 3. For massless electrons ��=0� this reduces
to

��2� =
L

v��0



du
tanh2 u

u2 cosh2 u�1/2

= 0.87L/v , �22�

as announced in Eq. �2�. In the large-� limit ��2�→� /�,
independent of the distance L over which the electrons are
transmitted. This is the electronic analog of the Hartman
effect.8,9

These results are for aspect ratios W /L�1 but the depen-
dence on the aspect ratio is rather weak, as illustrated in
Fig. 4.

FIG. 3. Dependence of the transmission time on the mass � of
the carriers in graphene �for W /L�1�. The time is below L /v for
all �, as a manifestation of the Hartman effect. While the plot is
for ��2� from Eq. �21�, the time ��1� from Eq. �24� differs only by a
few percent.�
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IV. CASE OF PERPENDICULARLY ALIGNED
MAGNETIZATIONS

We now turn to the case that the magnetization at the two
ends of the graphene sheet is mutually perpendicular, as well
as being perpendicular to the magnetic field B. Referring to
Fig. 1, we would have the magnetization in contacts 1 and 2
along the �y direction and the magnetization in contacts 3
and 4 along the �z direction �with B along x�. The transmit-
tances T↓↑ or T↑↑ defined in Eq. �5� now refer to the trans-
mission of a spin up in the �y basis to a spin down or spin up
in the �z basis.

A spin which is initially aligned along the y direction,
acquires after a time t a polarization in the z direction given
by �Bt+O�B2�. Analogously to Eq. �6�, we now define the
effective transmission time ��1� by

T↑↑ − T↓↑

T↑↑ + T↓↑
= �B��1� + O�B2� . �23�

A very similar calculation as in Sec. III gives

��1� = �L/v��
0



du
tanh�u2 + �2

�u2 + �2cosh2�u2 + �2

� ��
0



du
1

cosh2�u2 + �2�−1

. �24�

The � dependence of ��1� is only a few percent different from
that of ��2� �plotted in Fig. 3�. In the limit ��L�→0 of
massless electrons we find

��1� =
L

v
�

0



du
tanh u

u cosh2 u
=

7
�3�
�2

L

v
= 0.85

L

v
, �25�

as announced in Eq. �2�.

V. COMPARISON WITH WIGNER-SMITH DELAY TIMES

We wish to derive the relationship �1� between the trans-
mission time ��p� measured in spin precession and the mode-
dependent Wigner-Smith delay times �n. By definition, the
Wigner-Smith delay times are the eigenvalues of the Wigner-
Smith time-delay matrix,

Q = − i�S† dS

d�F
, �26�

constructed from the energy-dependent scattering matrix S.
The eigenvalues �n of Q appear in certain transport
properties17,18 but they are usually not directly measurable.
For example, the thermopower of a single-channel conductor
depends on the difference �1−�2 of the two eigenvalues of Q,
as well as on the eigenvectors. It is therefore not obvious a
priori that ��p� can be related to the �n’s.

Since we seek the delay times in the limit of zero mag-
netic field, we can consider a simpler scattering problem than
in the previous section, namely, transmission of spinless
electrons through a graphene sheet with the mass and poten-
tial profile shown in Fig. 2. In this case the scattering matrix
is given by7

S =
1

k cos kL − i�F sin kL

� 	�− q − i��sin kL k

k �q − i��sin kL

 , �27�

where k=��F
2 −�2−q2.

The general energy-dependent expression for Q is lengthy
but at the Dirac point it simplifies to

Q = ��q�	1 0

0 1

, ��q� =

tanh�L�q2 + �2�

v�q2 + �2
. �28�

So for each mode n there is a single doubly degenerate
Wigner-Smith delay time �n=��q=2�n /W�. The mode-
dependent transmission probability at the Dirac point is Tn
=T�q=2�n /W� with

T�q� =
1

cosh2�L�q2 + �2�
. �29�

Combination of Eqs. �28� and �29� shows that

�
n

�n
pTn

�
n

Tn

= �
0



dq
tanhp�L�q2 + �2�

vp�q2 + �2�p/2cosh2�L�q2 + �2�

� ��
0



dq
1

cosh2�L�q2 + �2��−1

, �30�

where we have replaced the sum over modes by an integra-
tion over wave vectors �appropriate for W /L�1�. Compari-
son with the expressions �21� and �24� for ��2� and ��1� proves
the identity �1� of the transmission time measured in spin
precession and the weighted average of the mode-dependent
Wigner-Smith delay times.

VI. CONCLUSION

In conclusion, we have shown how spin precession in
graphene may reveal an unusual dynamical aspect of ballistic
quantum transport at the Dirac point. In a clean charge-
neutral graphene sheet of length L, the transmission is via

FIG. 4. Dependence of the transmission time for �=0 on the
aspect ratio W /L of the undoped region. Both ��1� and ��2� are
plotted. The limiting values for W /L→ are given by Eq. �2�.
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evanescent rather than propagating waves. While for propa-
gating waves the transmission time is bounded by ��L /v,
evanescent waves have no well-defined velocity and can
show a shorter � in a precession measurement. This is the
electronic analog of the Hartman effect from optics.8,10 Our
result �2� for massless electrons is not much below �=L /v
but it does provide an unambiguous demonstration of this
apparent superluminality.

From a conceptual point of view, our analysis demon-
strates, first, that the pseudodiffusive aspects of ballistic
transmission at the Dirac point �as observed in conductance
and shot noise19–21� are restricted to static properties. The
dynamics is not diffusive in any sense �no L2 scaling of ��.
Second, our analysis demonstrates via the relation �1� that
the Wigner-Smith delay times are directly observable
through spin precession at the Dirac point.

We finally notice a qualitative difference between spin
precession in a tunnel barrier and spin precession at the Dirac

point. As pointed out by Büttiker,22 the spin of a tunneling
electron not only precesses in the y-z plane perpendicular to
B but in addition aligns itself along the magnetic field. The
rotation of the spin out of the y-z plane �dominant in a tunnel
barrier but ignored in the Larmor clock2,3� appears because
of a difference in tunnel probabilities for spins parallel or
antiparallel to B. No such out-of-plane rotation appears at the
Dirac point, due to the fact that the energy-dependent trans-
mission probabilities are extremal at zero energy. The spin-
precession geometry analyzed in this work is therefore par-
ticularly close to the original concept of a Larmor clock.
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